18.03 MIDTERM 1 - SOLUTIONS

October 2, 2019 (50 minutes)

PROBLEM 1

(1) Use Gaussian elimination to write the matrix $A=\left[\begin{array}{ccccc}1 & 0 & 2 & 0 & 0 \\ -1 & 2 & -2 & -1 & 2 \\ 0 & -2 & 0 & 0 & -1 \\ 0 & 0 & 0 & -2 & 2\end{array}\right]$ as $A=L U$, where L is a lower triangular 4×4 matrix and U is a 4×5 matrix in row echelon form.
(15 pts)
Solution: Using Gaussian elimination we get:

$$
\left[\begin{array}{ccccc}
1 & 0 & 2 & 0 & 0 \\
0 & 2 & 0 & -1 & 2 \\
0 & -2 & 0 & 0 & -1 \\
0 & 0 & 0 & -2 & 2
\end{array}\right] \rightsquigarrow\left[\begin{array}{ccccc}
1 & 0 & 2 & 0 & 0 \\
0 & 2 & 0 & -1 & 2 \\
0 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & -2 & 2
\end{array}\right] \rightsquigarrow\left[\begin{array}{ccccc}
1 & 0 & 2 & 0 & 0 \\
0 & 2 & 0 & -1 & 2 \\
0 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

We can rewrite these steps as multiplications by various elimination matrices and diagonal matrices. The first step is given by $E_{21}^{(1)}$, the second by $E_{32}^{(1)}$ and the third by $E_{43}^{(-2)}$. Thus we get:

$$
U=\left[\begin{array}{ccccc}
1 & 0 & 2 & 0 & 0 \\
0 & 2 & 0 & -1 & 2 \\
0 & 0 & 0 & -1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{array}\right], \quad L=E_{21}^{(-1)} E_{32}^{(-1)} E_{43}^{(2)}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & 2 & 1
\end{array}\right]
$$

(2) Express the matrix L in part (1) as a product of elimination matrices $E_{i j}^{(\lambda)}$ for various $i>j$ and constants λ. Then do the same for its inverse L^{-1}.
(10 pts)
Solution: Note from the computation above that we have written

$$
L=E_{21}^{(-1)} E_{32}^{(-1)} E_{43}^{(2)}
$$

Then using this and the fact that $(A B C)^{-1}=C^{-1} B^{-1} A^{-1}$, we can compute

$$
L^{-1}=E_{43}^{(-2)} E_{32}^{(1)} E_{21}^{(1)}
$$

(3) With the same notations as in part (1), find a permutation matrix P such that $P A^{\prime}=L U$, where $A^{\prime}=\left[\begin{array}{ccccc}-1 & 2 & -2 & -1 & 2 \\ 1 & 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & -2 & 2 \\ 0 & -2 & 0 & 0 & -1\end{array}\right]$.
Solution: Note that A^{\prime} is just A with the first two rows swapped and the last two rows swapped, so the permutation matrix we need is

$$
P=P_{12} P_{34}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

PROBLEM 2

Consider the system of equations:

$$
\left\{\begin{array}{l}
a-3 b+6 c-d=1 \tag{*}\\
-2 a+5 b-11 c+2 d=-2
\end{array}\right.
$$

(1) Write the system as $A\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right]=\mathbf{b}$ for a suitably chosen 2×4 matrix A and 2×1 vector \mathbf{b}.

Solution:We can rewrite the system of equations as:

$$
\left[\begin{array}{cccc}
1 & -3 & 6 & -1 \\
-2 & 5 & -11 & 2
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]=\left[\begin{array}{c}
1 \\
-2
\end{array}\right]
$$

(2) Use Gauss-Jordan elimination to put A in reduced row echelon form.

Solution: First add 2 times row 1 to row 2:

$$
\left[\begin{array}{cccc}
1 & -3 & 6 & -1 \\
-2 & 5 & -11 & 2
\end{array}\right] \rightsquigarrow\left[\begin{array}{cccc}
1 & -3 & 6 & -1 \\
0 & -1 & 1 & 0
\end{array}\right]
$$

Then multiply row 2 by -1 , to get all pivots equal to 1 :

$$
\left[\begin{array}{cccc}
1 & -3 & 6 & -1 \\
0 & -1 & 1 & 0
\end{array}\right] \rightsquigarrow\left[\begin{array}{cccc}
1 & -3 & 6 & -1 \\
0 & 1 & -1 & 0
\end{array}\right]
$$

Finally, add 3 times row 2 to row 1:

$$
\left[\begin{array}{cccc}
1 & -3 & 6 & -1 \\
0 & 1 & -1 & 0
\end{array}\right] \rightsquigarrow\left[\begin{array}{cccc}
1 & 0 & 3 & -1 \\
0 & 1 & -1 & 0
\end{array}\right]
$$

(3) What are basis vectors for the nullspace of A ? What is its dimension?
(10 pts)
Solution: The nullspace is the set of vectors $\left[\begin{array}{l}a \\ b \\ c \\ d\end{array}\right]$ such that:

$$
\left[\begin{array}{cccc}
1 & 0 & 3 & -1 \\
0 & 1 & -1 & 0
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]=0 \quad \Leftrightarrow \quad\left\{\begin{array}{l}
a=-3 c+d \\
b=c
\end{array}\right.
$$

The pivot columns are 1 and 2 , and the free columns are 3 and 4 . Recall that basis vectors are given by setting (c, d) equal to either $(1,0)$ or $(0,1)$, and using the equations above to solve for a and b :

$$
\text { a collection of basis vectors of } N(A) \text { are }\left[\begin{array}{c}
-3 \\
1 \\
1 \\
0
\end{array}\right] \text { and }\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]
$$

Therefore, the dimension of $N(A)$ is 2 .
(4) What is the general solution of the system (*)?

Solution: A particular solution can be obtained by setting the free variables c and d equal to 0 , and solving for the pivot variables:

$$
\left\{\begin{array}{l}
a-3 b=1 \\
-2 a+5 b=-2
\end{array}\right.
$$

You can solve this 2×2 system in a number of ways, or just notice that $a=1, b=0$ is a solution. So we conclude that $\left[\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right]$ is a particular solution to the system $(*)$. The general solution is given by adding the particular solution to an arbitrary element of the nullspace:

$$
\left[\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right]+\alpha\left[\begin{array}{c}
-3 \\
1 \\
1 \\
0
\end{array}\right]+\beta\left[\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right]
$$

for any numbers α and β.

PROBLEM 3

Consider the matrix $B=\left[\begin{array}{lll}1 & 1 & 5 \\ 2 & 0 & 4 \\ 3 & 1 & 9\end{array}\right]$.
(1) Put the matrix in row echelon form, and compute a basis for its column space. (15 pts)

Solution: Subtract 2 times row 1 from row 2, and 3 times row 1 from row 3:

$$
\left[\begin{array}{lll}
1 & 1 & 5 \\
2 & 0 & 4 \\
3 & 1 & 9
\end{array}\right] \rightsquigarrow\left[\begin{array}{ccc}
1 & 1 & 5 \\
0 & -2 & -6 \\
0 & -2 & -6
\end{array}\right]
$$

Then, let us subtract row 2 from row 3 :

$$
\left[\begin{array}{ccc}
1 & 1 & 5 \\
0 & -2 & -6 \\
0 & -2 & -6
\end{array}\right] \rightsquigarrow\left[\begin{array}{ccc}
1 & 1 & 5 \\
0 & -2 & -6 \\
0 & 0 & 0
\end{array}\right]
$$

Now from this row echelon form we can see the first 2 columns are pivot columns, so we get that the first 2 columns of B give a basis of the column space, i.e.

$$
\text { a basis of } C(B) \text { cosnists of the vectors }\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

(2) Find a linear combination of the columns of B which is 0 .

Solution: Any linear combination of the columns which is 0 will be accepted. But one way to work this out methodically is to recall that:

$$
\alpha\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]+\beta\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+\gamma\left[\begin{array}{l}
5 \\
4 \\
9
\end{array}\right]=0
$$

precisely means that:

$$
B\left[\begin{array}{l}
\alpha \\
\beta \\
\gamma
\end{array}\right]=0
$$

so we are looking for a non-zero vector in the nullspace of B. This is the same as the nullspace of the row echelon form matrix, so we are looking for α, β, γ which satisfy:

$$
\left[\begin{array}{ccc}
1 & 1 & 5 \\
0 & -2 & -6 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
\alpha \\
\beta \\
\gamma
\end{array}\right]=0 \quad \text { i.e. } \quad\left\{\begin{array}{l}
\alpha+\beta+\gamma=0 \\
-2 \beta-6 \gamma=0
\end{array}\right.
$$

You can get a solution by setting γ equal to anything (say, equal to 1) and then using the equations above to solve for $\beta=-3$ and $\alpha=-2$.
(3) Compute the matrix $S=B^{T} B$ and the difference $S^{T}-S$.

Solution:

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
1 & 0 & 1 \\
5 & 4 & 9
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 5 \\
2 & 0 & 4 \\
3 & 1 & 9
\end{array}\right]=\left[\begin{array}{ccc}
14 & 4 & 40 \\
4 & 2 & 14 \\
40 & 14 & 122
\end{array}\right]
$$

This matrix is symmetric as $\left(B^{T} B\right)^{T}=B^{T}\left(B^{T}\right)^{T}=B^{T} B$, hence $S^{T}-S=0$.
(4) Explain why for any 3×3 matrix X, the product $X B$ cannot be invertible.

Solution: The rows of $X B$ are linear combinations of the rows of B, which we have already seen has rank 2 . So the 3×3 matrix $X B$ does not have full column rank, hence it cannot be invertible.

